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A parabolic approximation to the reduced wave equation is investigated for the 
propagation of periodic surface waves in shoaling water. The approximation is derived 
from splitting the wave field into transmitted and reflected components. 

In the case of an area with straight and parallel bottom contour lines, the asymptotic 
form of the solution for high frequencies is compared with the geometrical optics 
approximation. 

Two numerical solution techniques are applied to the propagation of an incident 
plane wave over a circular shoal. 

1. Introduction 

of mild slope can be described by the solution of the reduced wave equation 
The propagation of periodic, small amplitude surface gravity waves over a seabed 

v . (cc, V@) + w W c , / c  = 0 (1) 

with appropriate boundary conditions. Here @(x, y) is the complex two-dimensional 
potential function, V = (a/ax, a/ay) the horizontal gradient operator, w the angular 
frequency, and c and c, are the corresponding local phase and group velocities of the 
wave field. This reduced wave equation accounts for the combined effects of refraction 
and diffraction, while the influences of bottom friction, current and wind have been 
neglected. 

The wave equation (1) has been derived by several authors, for the first time by 
Berkhoff (1972), and by Schonfeld (1972) in a different form. Svendsen (1967) derived 
the equation for one horizontal dimension, as is pointed out by Jonsson & Brink- 
Kjaer (1973). Smith & Sprinks (1975) gave a formal derivation of (1). Booij (1978) 
has proposed a new wave equation, which includes the effect of a current, and which 
reduces to (1) in the current-free case. 

The equation ( 1 )  is essentially of elliptic type, and therefore defines a problem 
which is in general properly posed only when a boundary condition along a closed 
curve is given. In  order to obtain a numerical solution for short waves over a large 
area in the horizontal plane, a great amount of computing time and storage is thus 
needed. However, in many water wave problems involving a gently sloping bottom, 
wave energy is propagating without appreciable reflexion or backscattering, and it 
should be natural to consider methods which make use of this property. In  the 
classification of Lundgren (1976), such methods can be distinguished as R-methods 
(refraction methods) and P-methods (propagation methods), both of which represent 
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an approximation to the mild-slope equation (1). Refraction methods are based on 
the geometrical optics approximation, which fails to give a reliable solution near 
caustics and crossing wave rays, where diffraction effects become important. 

Propagation methods should be able to account for such situations. Methods of this 
type have been proposed by Bibsel (1972), Lundgren (1976) and Radder (1977), but 
these are lacking, among other things, in the possibility of making systematic 
corrections which are needed if one wants to recover the complete wave field. 

A more systematic method which belongs to the same class is the parabolic equation 
method. It consists in approximating the elliptic wave equation by a parabolic wave 
equation, which is easier to solve numerically. This is because the parabolic equation 
permits solution by a marching method, while the elliptic equation needs simul- 
taneous solution over the whole area. The parabolic equation method has been 
extensively used in mathematical physics. It was introduced by Leontovich & Pock 
(1965), who applied the method to radio wave propagation in the atmosphere. A 
generalization of the method, based on the use of ray co-ordinates and the concept of 
transverse diffusion, was developed by Malyuzhinets (1 959) and by Pock & Wainstein 
(1965), and subsequently applied and extended to many other physical problems, e.g. 
in the field of seismic wave propagation (see Babich 1970). The most recent application 
has occurred in the field of underwater acoustics, a review of which is given by Tappert 
(1977), who presents a historical survey and a comprehensive list of references. Some 
additional references can be found in a recent paper by Candel (1979), concerning 
acoustic wave propagation in a turbulent medium. 

The standard parabolic wave equation, which has the same form as the Schrodinger 
equation in quantum mechanics, has the disadvantage of being limited to propagation 
in weakly inhomogeneous media, at  small angles with a preferred direction. This 
limitation may be overcome by expressing the parabolic equation in ray co-ordinates, 
neglecting the longitudinal diffusion along the rays. Recently, Kriegsmann & Larsen 
(1978) presented an asymptotic method, which combines the features of both the 
geometrical optics and parabolic approximations. However, in order to obtain the 
improved validity of the method, a more complex set of equations has to be solved, at  
the expense of rather heavy computational efforts. 

In  the present paper, a parabolic approximation to the reduced wave equation (1) 
is derived, based on the use of a splitting matrix, which divides the wave field into 
transmitted and reflected components. This procedure has been applied in optics by 
Corones (1975), and in acoustics by McDaniel (1975).t The result is a pair of coupled 
equations for the transmitted and reflected fields. By assuming that the reflected field 
is negligible (i.e. no backscattering), a parabolic equation is obtained for the trans- 
mitted field. This equation represents a significant improvement over the standard 
parabolic equation, because it is applicable, with reasonable accuracy, to wave 
propagation in strongly inhomogeneous media. The derivation is based on the Helm- 
holtz equation. Therefore, in $ 2  a reduction of equation (1) to the Helmholtz equation 
is given, and in $ 3 a parabolic approximation is derived. In  the remaining sections, 
two examples are considered. In  $ 4, the asymptotic form of the solution for high 
frequencies is compared with the geometrical optics approximation, in the case of an 
area with straight and parallel bottom contour lines. Finally, in $ 5 and $ 6 numerical 

t By an analogous procedure, the Schrodinger equation can be obtained as the non-relativistic 
approximation to the Klein-Gordon equation (see Messiah 1969, chap. XX). 
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solutions to the parabolic equation are obtained in the form of two finite-difference 
schemes, with application to plane wave propagation over a circular shoal with 
parabolic bottom profile. The results are compared with similar calculations in 
literature. 

2. Reduction of the mild-slope equation to the Helmholtz equation 
Although a parabolic approximation can be directly derived from equation ( l ) ,  it  

is useful, to simplify the notation and applications, to reduce equation (1 )  to the 
Helmholtz equation, without loss of generality. 

A scaling factor is introduced 
g5 = cD(cc,)3 (2) 

Vzg5+k:g5 = 0. (3) 

which turns (1)  into the Helmholtz equation 

Here the effective wavenumber kc is defined by 

and the wavenumber k is the positive real root of the dispersion relation 

w2 = gk tanh (kh) ( 5 )  

with h the local water depth and g the gravitational acceleration. The phase and 
group velocities are then given by c = w / k ,  cg = aw/ak. In shallow water, the difference 
k2, - k2 may become appreciable: in this case one has 

It follows, that kc may be approximated by k if 

IV2hJ < 2w2/g  

and IVhI2 < 4w2h/g, ( 7 b )  

implying a slowly varying depth and a small bottom slope, or high frequency wave 
propagation. 

Unless stated otherwise, k, will be approximated by k in this paper, assuming that 
(7  a )  and (7 b )  are satisfied. 

3. Derivation of the parabolic approximation 
The Helmholtz equation (3) can be written in the form 

a2g5/ax2 = - (k2 + P/ay2 )  g5 

in which x denotes a prescribed direction, preferably the main direction of propagation. 
For the derivation of the parabolic approximation, the subscript c of the wavenumber 
k in (8) has been dropped for convenience, without making use of the restrictions (7). 

6 FLM 95 



162 A. C. Radder 

The wave field q5 should be split into a transmitted field $+ and a reflected field q5- ' = #++'-. (9) 

This can be achieved by the use of a splitting matrix T which defines the transmitted 
and reflected components by 

The matrix T is formally arbitrary, but some general physical criteria limit the choice 
of T and lead to the governing parabolic equation in a natural way. 

Firstly, equation (9) is valid for arbitrarily chosen $+ and $- only if T satisfies 

a + y = l  and p + S = O .  

Using equation (8), it  follows that 

Further, when k is a constant, solutions of the form 

(13) 

should result, and equations (12u) and (12b) should naturally decouple in this case. 
This can be achieved by choosing 

$+ 2 eikx, $- II e-ikx 

k2p+ a2/p = 0, k2p+ y2/p  = 0 (14) 

and the resulting splitting matrix is (cf. Corones 1975) 

I 1  

while (12) reduces to 

and 

This pair of coupled equations is equivalent to equation (8). By neglecting the re- 
flected field $-, a parabolic equation for the transmitted field $+ is obtained 
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In  a similar way, a parabolic approximation can be directly derived from equation 
( l ) ,  which yields for the transmitted field @+ 

1 a(kcc,) i a +- -cc  21 CD' - a@+ = [&---  
ax Zkcc, ax 2kcc,ay "y 

Using ( 2 )  and (7), equation (17) is recovered. 

matrix is derived : 
By adding to the left-hand sides of (14) the operator pa2/ay2, another splitting 

where A = ( k 2 +  a2/ay2)t ,  and a closer approximation to equation (8) may be obtained. 
Unfortunately, the square-root operator A makes the resulting parabolic equation 
practically untractable, and a satisfactory approximation must be found for the 
operator A in order to obtain numerical results (for more details, see McDaniel 1975; 
Tappert 1977). 

In  the following, the parabolic equation ( 1  7) will be further investigated, and there- 
fore an appropriate choice for the direction x has to be made. For the cases considered 
here, x is defined through the direction of the incident plane wave. 

4. Asymptotic analysis for the one-dimensional case 
In  order to test the validity of the parabolic equation (17) as an approximation 

to equation (8), solutions to both equations will be compared in the case of an area 
with straight and parallel bottom contour lines. The problem is equivalent to plane 
wave propagation in a plane stratified medium in optics and acoustics, and the 
asymptotic analysis of Seckler & Keller (1959) will be followed here. Dropping the 
+ superscript, equation (17) can be written as 

where k, denotes a constant wavenumber, and n = k / k ,  the index of refraction. By 
introducing a new co-ordinate system ( p , ~ ) ,  with the CT axis parallel to the depth 
contours, 

I p = xcosa+ysina 

and CT = -xsina+ ycosa,  
the bottom is defined through 

h = h(p) ,  n zz n(p) ;  anlay = han/az,  h = tana,  (20)  

where a is the angle of incidence, with la1 < trr. 

to -a. 

then be written in the form 

It will be assumed that k ( p )  tends to the constant value k, (i.e. n(p)  -+ 1)  as p tends 

Now suppose a plane wave exp [ik,  x ]  is incident from x = - 00. The field Q can 
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withp = cosa/sin2a. Upon inserting (21 )  into (18 )  one finds that A satisfies 

A,, + kip2[n2 i- 2h%(n - l ) ]  A = 0. 

A (P) S: exp [ikoppl+ R exp - ikoppl, 

(22)  

(23) 

where the constant R denotes a complex reflexion coefficient. At p = + co, A(p)  should 
satisfy a radiation condition, i.e. no incoming wave from + a. 

The equation (22 )  is in general not explicitly solvable, and the solution must be 
represented by an approximation, which usually takes on an asymptotic form for 
high frequencies, in the limit k, 4 00. A point a t  which the coefficient of A in (22)  
vanishes is called a turning point, where the character of the solution changes from 
oscillatory to exponential. In  the geometrical optics approximation of the problem, 
a caustic line is formed a t  these turning points. If there is no turning point, and 
n + 2h2(n - 1 )  > 0 for all values of p,  the asymptotic form has an oscillatory character 
with R = 0, and can be found by the WKB-method (cf. Langer 1937) .  Let 

At p = - 00, A(p)  is supposed to behave like 

A,  = [n2+2h2n(n- 1)l-f (24)  

and 

then the WKB-approximation to @ is given by 

$, = A, exp [ ikoFp].  (26) 

A similar analysis for equation (8) results in the geometrical optics approximation. Let 

and 

A ,  = In2+h2(n2-l)l-f 

then the asymptotic form is given by 

#g = A ,  exp [ik, Fg]. (29 )  

In  the special case a = h = 0, both rjP and #, agree (if the scaling factor (cc,)~ is taken 
into account) with the classical shoaling formula for a progressive wave 

In the case of h =- 0, there is exact agreement only at  points, where n ( p )  takes on the 
value 1. 

In  table 1 ,  a comparison between #, and $, is made for the wave amplitude A ,  the 
wavenumber lVF[ and the angle of refraction 0, for some values of A, at points where 
n(p)  takes on the values 2 and 3. 

It is assumed, that the incident wave is starting in deep water, ko = w2/g, and a 
correction factor c, = n / [ l  + k, h(n2 - 1)]4 should be applied for the wave amplitudes, 
according to equation ( 2 ) .  The agreement is rather close, even for comparatively large 
values of A. 
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a h n CAA,, C A A ~  
45' 1 2 0.88 0.91 
45O 1 3 1.01 1.07 
63.4' 2 2 0.70 0.74 
63.4' 2 3 0.79 0.85 
71.6' 3 2 0.59 0.63 
7 1 ~ 6 ~  3 3 0.66 0.72 
76.0" 4 2 0.52 0.55 
76.0' 4 3 0.57 0.63 

I VEa I 
2.01 
3.03 
2.04 
3.12 
2.07 
3.21 
2-09 
3.27 

IVFA 0, O a t  
2 20-6' 20.7' 
3 13.5' 13.6' 

3 16.7' 17.3' 
2 27.3' 28.3' 
3 17.2' 18.4' 
2 27.6' 29*Oo 
3 17.3" 18.9' 

2 26.1' 26.6' 

t Cf. Snell's law of refraction: sin a = nsin 0,, which can easily be deduced from equation (28). 

TABLE 1. Comparison of refracted plane waves, no turning point 

Now suppose there is just one turning point a t  p = p,, where p, is a single root of 

This will occur when n takes on the value np : 
the equation n + 2h2(n - 1) = 0. 

2h2 
1 + 2h2' 

np = - 

In  case of equation (8), the corresponding value is given by n, : 

n =  1'1 = sina. 
ff ( 1 + A 2 ) 4  

An analysis of the turning point problem can be found in the article of Langer (1937) : 
for p > p,, A (p )  takes on an exponentially decreasing form 

where Q = k0pln2+2h2n(n- I)\*. (34) 

Near the turning point, the asymptotic form of the solution can be represented by 
Airy functions. 

Upon inserting ( 3 3 )  into (21) one obtains the asymptotic form q5p. Here, only the 
behaviour of $p at - co will be given explicitly 

$,( - co) e exp [ik, x ]  + R, exp [iko(x(h2 - 2 )  - 2yh)/A2], (35) 

with IR,1 = 1 ,  i.e. a fully reflected plane wave arises, with wave number kp and angle 
of reflexion ap given by 

(36) 
A3 

2+h2' kp  = k,( 1 + 4 / h 4 ) f ,  ap = arctan - 

For the geometrical optics solution, the corresponding formulas are given by 

$,(-co) 21 e x p [ i k , x ] + R g e x p [ i k , ( x ( h 2 -  1)-2yh)/(l + A 2 ) ]  

IR,I = 1, k, = k,, ag = arctanh = a. (37) 

For some values of h, a comparison is presented in table 2 and in figure 1. 
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a A 929 921 kslko Jdkl l  a9 a, 
45O 1 0.67 0-71 2.24 1 18.4" 46" 
63.4" 2 0.89 0.89 1.12 1 53.1" 63.4" 
71.6" 3 0.95 0.95 1.02 1 67.8" 71.6" 
76.0" 4 0.97 0.97 1-01 1 74.3" 76.0" 

TABLE 2. Comparison of plane waves, reflected at a turning point 

FIUURE 1. Comparison of asymptotic directions of rays (---+), reflected at a caustic line (---), 
between parabolic (as) and geometrical optics (a,) approximations, for some values of A = t a u .  
(a) A = 1; (b)  A = 2; (c) A = 3; (d) A = 4. 

Since the geometrical optics solution gives the correct result for k and a, it  is obvious 
that the parabolic approximation is valid in this case, provided h2 > 2, i.e. a near 90". 
For small values of A, the coupling between the transmitted and reflected wave fields 
in equations (16) cannot be neglected (however, a significant improvement may be 
obtained by choosing the z axis in equation (18) parallel to the depth contours). For 
systematic corrections to the parabolic approximation, see Corones (1975). 

5. Numerical solutions for the general case 

this section, two alternatives will be dealt with. Assuming pIane wave incidence 
The parabolic equation (17) may be solved by using finite-difference techniques. In  

4 = Y exp [ik,~], (38) 

then equation (18) yields for the complex potential functiony, 

a 2 \ r  8Y 
--++ikon- +fY = 0,  a!i2 ax (39) 



Parabolic equation method for water-wave propagation 167 

where 

A Crank-Nicholson finite-difference equation is used for the numerical solution to 
equation (39), cf. Richtmyer & Morton (1967): let a rectangular grid be given with 
grid spacings Ax and Ay, and let the approximation toY(Mx, jay) be denoted byY$, 
I ,  j = 0, 1,2, . . . . The scheme I is then defined by 

+'I?$?; +\r:+1 +Y$-1+ [ - 2 + (Ay)'fj'+3] . ('€''j+l +Y$) 

where 

ni++ = i(nf+l+nf), fj+3 = kin$++ 

? = 1 ,  j = o , 1 , 2  ,..., (43) 
and with initial condition 

and appropriate boundary conditions, to be specified later on. An alternative solution 
technique is based on a description in terms of amplitude and phase. This can be 
achieved by the change of variable 

which turns (39) into 
Y = eb (44) 

. ,  
azC ac ac aC -+-.-++ik n-+f = 0. a32 ay a9 0 ax (45) 

It may be expected that the solution 5 is a less rapidly varying function than Y ,  
thus providing a more accurate approximation with the same gridsize. However, the 
transformation (44) is singular at points where '4' = 0 (branchpoints, or: amphidromic 
points), and a, direct application of a scheme like (41) is not possible. In  order to 
prevent the nonlinear instabilities involved, it appears to be useful to add to the 
left-hand side of (45) an artificial viscosity term of the form 

where ,8 is a dimensionless constant of the order of 1.  (There is some resemblance with 
the Lax-Wendroff treatment of shocks, where an analogous dissipative term has been 
introduced to insure stability; see Richtmyer & Morton (1967), chap. 12.) Let 

gj = 2 - ip. lc$+x - 25; + Cj-11, 

C;:: f [s:- + a + 1 -  G-1)1+ C;% rd - G+1- C;-I)l+ 

(47) 

then the scheme I1 is defined by 

with initial condition 
g L 0 ,  j = o , 1 , 2  ,... 

and appropriate boundary conditions. 
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FIQWRE 2. Comparison of relative wave amplitudes for bottom configuration I, between results 
of the schemes I and I1 (continuous curves, Ax/Lo = Q) and results of I to  & Tanimoto (1972) 
and of Flokstra BE Berkhoff (1977) (circles). (a) y/Lo = 4; (b)  "/Lo = 7; (c) "/Lo = 6. 

Both schemes being implicit, a system of simultaneous linear equations has to be 

The rate of convergence will be exemplified in the next section, where numerical 
solved. For systems like (41) or (48) very efficient methods are available. 

solutions are obtained for the case o€a circular shoal. 

6. Application to circular shoal 
As an example, the propagation of an incident plane wave will be considered over a 

circular symmetric shoal with parabolic bottom profile. Calculations for this severe 
test case have been made by Berkhoff (1976), Bettess & Zienkiewicz (1977), Flokstra 
& Berkhoff (1977), and Ito & Tanimoto (1972) who additionally conducted some 
laboratory experiments. 

The shoal is represented by the depth profile 

where 

and 

h =  hm+e,r2 €or r < R, 
h = h, for r 2 R, 

r2 = (x - x,)~ + (y - Y,)~ 

e,  = (h,-h,)/R2. 

To be definite, short wave propagation is considered, and the assumptions (7) should 
apply, which amount to: 

e, < w2/9. (51) 
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FIQURE 3. Contour lines of the amplitude for configuration I, 

according to scheme I (Ax/&, = 4). 

This implies that the curvature of the bottom is much less than the wavenumber, 
regardless of the value of the minimum depth. The value of the angular frequency 
w follows from the dispersion relation ( 5 ) :  o2 = gk, tanh (k, h,); denoting the 
corresponding wavelength by Lo = 27r//kn. the problem is then defined through the 
parameters hJR, h,/R and Lo /R.  

In  order to specify the boundary conditions, it is useful to analyse the asymptotic 
character of the solution for large distance x. The governing equation (viz. equation 
(39), with 72 f 1) stands for the Schrodinger equation of a free particle, which is 
represented by a one-dimensional wave packet. The behaviour of this wave packet for 
large x is a well-known problem in wave mechanics: the spreading of the packet 
increases linearly with the distance x, and the magnitude approaches zero, as l/x* 
(see Messiah 1969, chap. VI). 

It follows, that the required boundary conditions for schemes I and 11, in case of a 
shoal, can be given by the undisturbed initial values of the solution, Y = 1 and 5 = 0, 
provided these boundaries are taken sufficiently far away from the area of interest. 
In  this way, the artificial reflexions which may occur at the boundaries, can be avoided. 

Some calculations with the numerical schemes have been performed, for two 
configurations of the shoal: 
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FIGURE 4. Contour lines of the amplitude for configuration I, 

according to scheme I1 (Az/L, = +). 
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Configuration I, defined through: 

h J R  = 0.0625; h,/R = 0-1875; Lo/R = 0.5. 

Configuration 11, defined through: 

h,mlR = 0.016; h,/R = 0.116; L,/R = 0.288. 

The parameter e,g/w2 takes on the value 0.01 for configuration I, and the value 0.005 
for configuration 11, so the inequality (51) is valid in both cases. The constant p in 
(46) is chosen to be 1, and the grid spacings have been varied according to 

AylAx = 4; AXIL, = l , i , $  and 4. 
Configuration I has been studied by Ito & Tanimoto (1972), who use a finite-difference 
timestep method, and by Flokstra & Berkhoff (1977), who use a finite-element elliptic 
method. In  figure 2, a comparison is given for the relative wave amplitudes, showing 
a good agreement. A detailed view of the solution is presented in figures 3-6, in which 
the centre of the shoal, with radius R = 16Ax, is located a t  x, = 33, ynL = 113 (in 
grid units). 
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FIGURE 5. Energy flux lines for configuration I ,  according to scheme I ( A x / L o  = 8 ) .  

Ay/Ax = 3 

Scheme I 1 
AX/LO 

3 
f 
9 

Scheme I1 1 
(P = 1) 4 

& 
8 

Ito & Tanimoto (1972) 
Flokstra & Berkhoff (1977) 
Bettess & Zienkiewicz (1977) 

Configuration I 
& 

Maximum Location 

2.17 8.5 
2-08 7.0 
2.05 6.8 
2.05 6.6 

2.10 7.0 
2.03 6.5 
2.04 6.6 
2.05 6.6 

2.1 6.3 
2.04 6.4 

A X I L O  

- - 

Configuratioo I1 

Maximum Location 

2.57 9.0 
3.18 7-0 
3.01 6.0 
2.96 5.7 

2.85 6.0 
2.96 5.8 
2.92 5.7 
2.97 5.7 

3.1 5.7 
2.9 5-65 

A X I L O  

- - 

TABLE 3. Comparison of maximum wave amplitudes for a circular shoal 
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FIUURE 6. Contour lines of the phase for configuration I, 
according to scheme I1 (Az/L,  = +). 

140 160 180 200 220 240 260 280 

These figures show, successively, contour lines of the amplitude, energy flux lines 
(wave orthogonals), and contour lines of the phase (wave fronts). Energy flux lines are 
defined through the energy streamfunction G: 

where amplitude A and phase F are given by qi = AeiF. If the field qi satisfies the 
Helmholtz equation (8)) it follows that V F  .VG = 0, i.e. orthogonality of V F  and 
VG, which provides another test of validity for the parabolic approximation. 

I n  figure 7, an indication is given of the rate of convergence of the numerical schemes, 
for the relative wave amplitudes on the line of symmetry, y = ym (cf. table 3 for a 
comparison of maximum wave amplitudes). 

Configuration I1 has been studied by Flokstra & Berkhoff (1977)) and Bettess & 
Zienkiewicz (1977)) using a finite-element elliptic mebhod. In  figures 8 and 9, the 
relative wave amplitudes on the line of symmetry are presented (cf. table 3). It appears 
that  the minimum near the end of the shoal cannot be represented properly by the 
solution of scheme 11. This is caused by the occurrence of branchpoints, €or which 
A = 0. I n  the vicinity of such points, the phase is a multiple-valued function, and the 
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FIGURE 8. Comparison of relative wave amplitudes for configuration 11, on the line of symmetry, 
between results of scheme I (continuous curves) and results of Flokstra & Rerkhoff (1977)(circles). 
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FIQURE 9. Comparison of relative wave amplitudes for configuration 11, on the line of symmetry, 
between results of scheme I1 (continuous curves) and results of Flokstra & Berkhoff (1977) 
(circles). 

energy flux lines are closed. The application of scheme I1 then results in a smoothed 
solution, which may be preferable when the accuracy requirements are not too high. 

7. Summary and conclusions 
For the propagation of periodic surface waves in shoaling water, a parabolic wave 

equation (18) has been derived, based on the splitting technique of Corones (1975). 
This method yields a pair of coupled equations for the transmitted and reflected fields, 
and the parabolic equation results from neglecting the reflected field. In the case of an 
area with straight and parallel bottom contour lines, the asymptotic form of the 
solution for high frequencies is compared with the geometrical optics approximation. 
There is a close agreement, if there is no caustic line. In  the presence of a caustic, there 
is a reasonable agreement provided the angle of incidence is close enough to 90". 

Finally, two numerical solution techniques are presented in the form of finite- 
difference schemes, each based on a different form of the parabolic equation. As an 
example, wave propagation over a circular shoal is considered, where the geometrical 
optics approximation predicts a cusped caustic line. For two bottom configurations, 
the results are compared with similar calculations in literature, showing a reasonable 
agreement. Which solution technique is preferable depends upon the required accuracy 
and the available computer capacity. 

The parabolic equation method may be applied to short wave propagation in large 
coastal areas of complex bottom topography. 

The author wishes to thank Dr W. F. Volker of the SWA-department, for the many 
valuable discussions during the course of this research. 
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